مسئله تعادل اولام - هایرز در فضاهای نرمدار

thesis
abstract

در این پایان نامه، به اثبات قضیه های پایداری اولام- هایرز تعمیم یافته با استفاده از روش مستقیم وروش نقطه ثابت می پردازیم. 2f(x + y/2)+ f(x -y/2)+ f(y - x/2()= f(x) + f(y) همچنین به مطالعه پایداری اولام - هایرز تعمیم یافته همریختی های تصادفی در جبر های نرم دار تصادفی می پردازیم.

similar resources

مسئله تعادل اولام- هایرز در فضاهای نرمدار

در این پایان نامه، به اثبات قضیه های پایداری اولام- هایرز تعمیم یافته با استفاده از روش مستقیم وروش نقطه ثابت می پردازیم. 2f(x + y/2 )+ f(x - y/2 )+ f(y - x/2 )= f(x) + f(y): همچنین به مطالعه پایداری اولام - هایرز تعمیم یافته همریختی های تصادفی در جبر های نرم دارتصادفی می پردازیم

15 صفحه اول

پایداری ناارشمیدسی هایرز-اولام معادلات دیفرانسیل خطی ناهمگن مرتبه‌ دوم

فرض کنیم فضای نرمدار ناارشمیدسی اعداد حقیقی باشد. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری هایرز-اولام این معادله را در فضای نرمدار ناارشمیدسی اعداد حقیقی ثابت می‌کنیم. معادله دیفرانسیل خطی ناهمگن مرتبه‌ دوم با ضرایب غیرثابت را در نظر می‌گیریم که در آن توابع داده شده پیوسته هستند. در این مقاله پایداری ه...

full text

پایداری هایرز-اولام معادلات ترکیبی روی فضاهای مختلف

در این پایان نامه ابتدا مفهوم پایداری معادلات تابعی و تاریخچه آن بیان شده و سپس در فصلهای بعدی چند معادله تابعی ترکیبی را معرفی کرده و پایداری این معادلات را در فضاهای شبه باناخ، رندم باناخ و آی-رندم باناخ بررسی کرده ایم.

15 صفحه اول

تعامد برکوف-جیمز در فضاهای برداری نرمدار

در این مقاله به بیان چگونگی گسترش رابطۀ تعامد دو بردار در فضاهای ضرب داخلی به فضاهای برداری نرمدار می پردازیم. رابطۀ تعامد بِرکوف-جیمز و انواع دیگر تعامد را معرفی و ویژگی های آنها را از دید هندسۀ فضاهای برداری نرمدار بیان می کنیم.

full text

پایداری هایرز - اولام - راسیاس یک معادله مربعی

در طول این پایان نامه پایداری نا برابری های مربعی پیکسیدر شده دو نوع تابع را ثابت می کنیم .

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023